IN VIVO MEASUREMENT OF THE ATTENUATION COEFFICIENT OF THE SCLERA AND CILIARY MUSCLE FROM TRANSSCLERAL OPTICAL COHERENCE TOMOGRAPHY IMAGES

Gabrielle Mesquita1, Yu-Cherng Chang1, Florence Cabot1,3, Marco Ruggeri1, Sonia Yoo1-3, Jean-Marie Parel1-4, Fabrice Manns1,2

1 Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL; 2Department of Biomedical Engineering, University of Miami, Coral Gables, FL; 3Anne Bates Leach Eye Hospital, Bascom Palmer Eye Institute, University of Miami College of Engineering, Coral Gables, FL; 4Vision Cooperative Research Centre, Brien Holden Vision Institute, UNSW, Sydney, NSW, Australia

PROGRAM # 2709

PURPOSE

- Images of accommodation-induced changes in the ciliary muscle acquired using Optical Coherence Tomography (OCT) can provide insight into the mechanism of accommodation1-3.
- Optimization of ciliary muscle imaging parameters requires a better understanding of the optical properties of sclera and ciliary muscle.
- The purpose of this study was to quantify the attenuation coefficients of the sclera and ciliary muscle in vivo.

METHODS

- A Spectral-Domain OCT System (Thorlabs Telesto, Newton, NJ) coupled with an accommodation module4 was used to image the ciliary muscle in the left eye of:
 - 16 subjects (range 20 to 50 y/o) in the relaxed state.
 - 7 subjects (range 24 to 48 y/o) at 0, 2, and 4D.
- The boundaries of the sclera and ciliary muscle in the selected A-line passing through apex were determined from visual inspection of the OCT images.
- The attenuation coefficient of the sclera and ciliary muscle were calculated from the axial reflectivity profile.

RESULTS

- There are significant inter-individual variations in the attenuation coefficient of the sclera and ciliary muscle in vivo from OCT images.
- There is no apparent trend in sclera and ciliary muscle attenuation coefficients with accommodation stimuli.

ACKNOWLEDGEMENTS

The study was supported in part by National Eye Institute Grants 2R01EY14225, R01EY121834, P30EY14801 (Center Grant); the Florida Lions Eye Bank; the Henri and Flore Lesieur Foundation (JMP); Drs. Raksha Urs and Aaron Furtado; Karl R. Olsen, MD and Martha E. Hildebrandt, PhD; an unrestricted grant from Research to Prevent Blindness; and the Australian Federal Government Cooperative Research Centre Scheme through the Vision Cooperative Research Center. A special thanks to Sofia Vignolo for her assistance with the poster.

REFERENCES